

Objectives

- 1. To know what a physical magnitude is.
- 2. To know in which it consists to measure and to understand the necessity of an unit of measurement
- 3. To know the units of the international system of length, surface, volume, mass and temperature.
- 4. To know how to measure with simple instruments like rulers, scales, thermometers, graduated cylinders.
- 5. To know how to pass between the multiples or submultiples of the units of measurement of the magnitudes: length, surface, volume, mass and temperature.
- 6. To know that the mass of a system does not change if matter does not enter or leave.
- 7. To know that the gases weigh and measure volumes.
- 8. To know that the volume of a system does not depend on the state of division nor of its form.
- 9. To know that the volume of an object can change without material entering or leaving.
- 10. To differentiate between mass and volume.
- 11. To know how to calculate the density of an object knowing its mass and volume.
- 12. To know how to apply the values of density to decide what bodies float in others.
- 13. To know the density is a characteristic property because it allows for identifying substances. It depends on the nature of each substance and not on the amount nor on the form.
- 14. To know how to design and to carry out experiments to measure the density of an object.
- 15. To know that the temperature informs about the thermal state of objects.
- 16. To know that the temperature does not depend on the amount of substance nor on the type of substance.

It is any material in the Universe

It has mass and takes up a place in space

It occurs in different physical states, such as solid, liquid or gas

Matter has qualities, such as colour, brightness, flavour, smell, hardness, touch, mass, volume....We use them to describe it. All these qualities and other many, are properties of matter

It is to compare what we want to measure with an amount of that magnitude that we use as a pattern

We need to measure:

- 1. A measurement instrument
- 2. A comparative pattern

We can measure some properties of matter but not others. Those that we can measure, are **quantitative properties**. Those that we cannot measure, are **qualitative properties**.

We call the quantitative properties, physical magnitudes. A physical magnitude is a property that we can measure. Some of these properties are:

Units of the international system

A system of units is the set of magnitudes and chosen units to measure them.

The system of units more extended all over the world is the international system of units, adopted in the General Conference of Weights and Measures, celebrated in Paris in 1960. Some magnitudes and its units are:

MAGNITUDE	UNIT	SYMBOL
Length	Metre	m
Area	Square metre	m²
Volume	Cubic metre	m ³
Mass	Kilogram	kg
Temperature	Kelvin	К
Time	Second	S
Force	Newton	Ν
Energy	Joule	J
Density	Kilogram/Cubic metre	kg/m ³

Length is the distance between two points

The unit of length in the international system of units is the metre (m)

Multiples and submultiples of metre

UNIT	SYMBOL	EQUIVALENT	
Kilometre	km	1 km = 1 000 m	km hm
Hectometre	hm	1 hm = 100 m	dam m / dm
Decametre	dam	1 dam = 10 m	
Metre	m	1 m	
Decimetre	dm	1 dm = 0,1 m	L In the stairs of the
Centimetre	cm	1 cm = 0, 01 m	length, each step is 10 times greater than the inferior
Millimetre	mm	1 mm = 0,001 m	immediate step.

Multiples and submultiples of square metre

UNIT	SYMBOL	EQUIVALENT		
Square kilometre	km²	1 km² = 1 000 000 m²	kr	n² hm²
Square hectometre	hm²	1 hm² = 10 000 m²		dam ² m ²
Square decametre	dam ²	1 dam ² = 100 m ²		cm ² mm ²
Square metre	m²	1 m²		
Square decimetre	dm²	1 dm² = 0,01 m²	Z	In the stairs of the surface, each step
Square centimetre	cm²	1 cm ² = 0, 000 1 m ²		is 100 times greater than the inferior immediate step.
Square millimetre	mm²	1 mm ² = 0,000 001 m ²		

Multiples and submultiples of cubic metre

UNIT	SYMBOL	EQUIVALENT	
Cubic kilometre	km³	1 km³ = 1 000 000 000 m³	km ³ hm ³
Cubic hectometre	hm³	1 hm³ = 1 000 000 m³	dam ³ m ³ dm ³
Cubic decametre	dam ³	1 dam ³ = 1 000 m ³	cm ³ mm ³
Cubic metre	m ³	1 m ³	
Cubic decimetre	dm³	1 dm³ = 0, 001 m³	In the stairs of the volume, each step
Cubic centimetre	cm ³	1 cm ³ = 0, 000 001 m ³	is 1000 times greater than the inferior immediate
Cubic millimetre	mm ³	1 mm ³ = 0,000 000 001 m ³	step.

Other units of volume

In addition to the unit of the international system, the cubic meter, and the multiples and submultiples that you already know, it is very frequent to use other units, like the litre (L), the decilitre (dL), the centilitre (cL) and the millilitre (mL)

UNIT	SYMBOL	EQUIVALENT	
Kilolitre	kL	1 kL = 1 000 L	kL hl
Hectolitre	hL	1 hL = 100 L	daL
Decalitre	daL	1 daL = 10 L	
Litre	L	1 L = 1 dm ³	
Decilitre	dL	1 dL = 0,1 L	In these stairs, each step is 10 times greater than the
Centilitre	cL	1 cL = 0,01 L	inferior immediate step.
Millilitre	mL	1 mL = 0,001 L	

We use different containers to measure the volume of liquids, in a laboratory. Some of them are the following ones

Erlenmeyer flask

Pipette

Graduated cylinder

Beaker

Volumetric flask

Submultiples of kilogram

UNIT	SYMBOL	EQUIVALENT	
Kilogram	kg	1 kg	kg hg
Hectogram	hg	1 hg = 0,1 kg	dag g / dg
Decagram	dag	1 dag = 0,01 kg	
Gram	g	1 g = 0,001 kg	
Decigram	dg	1 dg = 0,000 1 kg	In the stairs of the mass, each step is
Centigram	cg	1 cg = 0, 000 01 kg	10 times greater than the inferior
Milligram	mg	1 mg = 0,000 001 kg	immediate step.

DENSITY

Density is the relationship between the mass of an object and its volume, we represent it by the symbol (ρ)

The density is a characteristic property because it allows us to identify substances

If we want to calculate the density of an object, we must calculate its mass and its volume

TEMPERATURE

Temperature informs us about the thermal state of objects

The temperature of the objects does not depend on either the type of substance nor the amount of substance

We can measure the temperature of an object with thermometers

The unit of temperature in the international system of units is the Kelvin

In order to transform the degrees Celsius into Kelvin we must add 273

T^a (K) = T^a (^oC) + 273 orales Bernal

Is the air matter?

A. No, because it does not weigh anythingB. Yes, although its weight is zeroC. No, because we do not see itD. Yes, although we cannot see it

Put the following words in order to form a text with sense

Classify the following terms as material or not:

TERMS	YES OR NOT
A roll of film	
The temperature of soup	
Alcohol	
Kindness	
Butane gas	
Gold	
The volume of a table	
Smoke	
Clouds Susar	a Morales Bernal

Indicate in each case the magnitude (property that we measure), the unit and the amount of the following measures:

MEASUREMENT	MAGNITUDE	UNIT	AMOUNT
15 g			
10 m ³			
14 cm²			
1000 L			
50 s			
100 cm			
1,2 g/cm ³	Susana Mora	ales Bernal	

- What are the decametre, the hectometre and the kilometre?
- A. Multiples of metre
- B. Submultiples of metre
- C. Submultiples of hectare
- D. Submultiples of length

Kilometre	km
Hectometre	hm
Decametre	dam
Metre	m
Decimetre	dm
Centimetre	cm
Millimetre	mm

km	hm	dam	m	dm	cm	mm
0,003						
	0,2					
		5				
			3000			
				56,8		
					1224,6	

km ²	hm²	dam ²	m²	dm²	cm ²	mm ²
0,002						
	0,01					
		3				
			4000, 20			
				200,45		
					6000	

km ³	hm³	dam ³	m ³	dm³	cm ³	mm ³
0,003						
	0,03					
		0,3				
			3			
				30		
					300	

cm ³	dm ³	L	mL
50			
		4,5	
	3		

The mass of an object is 320 g, its area is 80 cm², its volume is 250 cm³, its height is 70 mm and its temperature is 15 °C. Express the previous measures in the units of the international system.

Measurement	Unit of International System
320 g	
80 cm ²	
250 cm ³	
70 mm	
15 °C	

- What is the area of the figure?
- A. Forty five square metres
- B. Ninety square metres
- C. Nineteen square metres
- D. Forty five cubic metres

9 m

Calculate the area of the following figure

Express the result in m² and in mm²

What is the volume of the cube?

- A. A cubic metre
- B. Three cubic metres
- C. A square metre
- D. A litre

Calculate the volume of the figure below

You divide a chalk in pieces of different sizes. Tell if the following affirmations are true or false

- A. The sum of the masses of the different chalk pieces is greater than the mass of the complete chalk
- B. The volume of the complete chalk is equal to the sum of the volumes of the chalk pieces

- C. The area of the complete chalk is equal to the sum of the areas of the chalk pieces
- D. The temperature of a chalk piece is less than the complete chalk Susana Morales Bernal

Complete : In order to find the of a substance, you have to divide its between its.....

Complete the following chart

MASS	VOLUME	DENSITY
35 g	7 cm ³	
3000 kg	0,8 m ³	
300 g		600 g/L
	5 L	0,9 kg / L

The wood piece and the metal piece are the same size. Why does the piece of metal weigh more?

- A. Because the density of the wood is greater than the density of the metal
- B. Because the metal is less dense than the wood
- C. Because the metal is heavier than the wood
- D. Because the density of the metal is greater than the density of the wood

We have two exactly equal dice, one of silver and another one of gold. We submerge them in two containers that have the same amount of water.

Will the level that the water reaches be the same in both containers? Explain if each of the following expressions are true or false.

- A. No, because both dice have the same volume
- B. Yes, because although they are different substances, they have the same volume
- C. It depends on what the containers are like
- D. Yes, because the gold die weighs more than the silver one

What is denser, one gram of mercury or one ton of mercury?	What has more mass, one litre of water or one litre of mercury?
A. One gram of mercuryB. One ton of mercuryC. They are the same	A. One litre of waterB. One litre of mercuryC. They are the same
What takes more volume, one litre of water or one litre of mercury?	What is denser, water or mercury?
A. One litre of waterB. One litre of mercuryC. They are the same	A. Water B. Mercury

Revise your vocabulary

Choose a word and fill the blanks below

distance, has, submultiple, magnitude, does, amount , square, depend, space, Kelvin, mass, takes up, volume, area, two, cubic, temperature, kilogram, mass, volume

A. Matter is all that has and a place in space. B. Mass is the of matter that an object C. Length is the between points. D. The that an object takes up is the E. The unit of volume in the international system of units is the metre F. Density is the relationship between the of an object and the it takes up. G. The unit of in the international system of units is the metre (m^2). H. Beauty is not a physical I. Temperature of the objects not not on the amount of substance. J. The unit of in the international system of units is the K. The milligram is aSusana Moof the nat.....

GLOSSARY

Amount

- Area
- Balance
- Beaker
- Characteristic
- **Container**
- **Cubic meter**
- Degree
- Density
- **Distance**
- Energy
- **Erlenmeyer flask**
- Force
- Gas
- Graduated cylinder
- International System
- Length
- 🖵 Liquid

- Litre
- Mass
- Matter
- Metre
- Physical magnitude
- Pattern
- Pipette
- Point
- Property
- Qualitative
- **Quantitative**
- Relationship
- Set
- Solid
- Space
- Square metre
- **Submultiples**
- Substance Susana Morales Bernal

- Temperature
- Thermometer
- **Time**
- To allow
- To calculate
- **To classify**
- **To compare**
- To complete
- **To describe**
- To express
- To indicate
- **D** To measure
- To order
- **D** To take up
- To weigh
- 🖵 Unit
- **U** Volume
- Volumetric flask

Erlenmeyer flask

Beaker

Volumetric flask

Graduated cylinder

