10 ESO

1. To know what a physical magnitude is.
2. To know in which it consists to measure and to understand the necessity of an unit of measurement
3. To know the units of the international system of length, surface, volume, mass and temperature.
4. To know how to measure with simple instruments like rulers, scales, thermometers, graduated cylinders.
5. To know how to pass between the multiples or submultiples of the units of measurement of the magnitudes: length, surface, volume, mass and temperature.
6. To know that the mass of a system does not change if matter does not enter or leave.
7. To know that the gases weigh and measure volumes.
8. To know that the volume of a system does not depend on the state of division nor of its form.
9. To know that the volume of an object can change without material entering or leaving.
10. To differentiate between mass and volume.
11. To know how to calculate the density of an object knowing its mass and volume.
12. To know how to apply the values of density to decide what bodies float in others.
13. To know the density is a characteristic property because it allows for identifying substances. It depends on the nature of each substance and not on the amount nor on the form.
14. To know how to design and to carry out experiments to measure the density of an object.
15. To know that the temperature informs about the thermal state of objects.
16. To know that the temperature does not depend on the amount of substance nor on the type of substance.

What is matter?

It is any material in the Universe

It has mass and takes up a place in space

It occurs in different physical states, such as solid, liquid or gas

The weight of the drawing has a mass of 100 g

This space is already occupied by air Susana Morales Bernal

Properties of matter

Matter has qualities, such as colour, brightness, flavour, smell, hardness, touch, mass, volume....We use them to describe it. All these qualities and other many, are properties of matter

EXTENSIVE PROPERTIES: those properties that depend on the amount of substance. Mass and volume are extensive properties.

INTENSIVE PROPERTIES: those properties that do not depend on the amount of substance. Colour, brightness, flavour, smell, hardness are intensive properties.

What is measuring?

It is to compare what we want to measure with an amount of that magnitude that we use as a pattern

We need to measure:

1. A measurement instrument
2. A comparative pattern

We can measure some properties of matter but not others. Those that we can measure, are quantitative properties. Those that we cannot measure, are qualitative properties.

We call the quantitative properties, physical magnitudes. A physical magnitude is a property that we can measure. Some of these properties are:

Units of the international system

A system of units is the set of magnitudes and chosen units to measure them.
The system of units more extended all over the world is the international system of units, adopted in the General Conference of Weights and Measures, celebrated in Paris in 1960. Some magnitudes and its units are:

MAGNITUDE	UNIT	SYMBOL
Length	Metre	m
Area	Square metre	m^{2}
Volume	Cubic metre	m^{3}
Mass	Kilogram	kg
Temperature	Kelvin	K
Time	Second	s
Force	Newton	N
Energy	Joule	J
Density	Kilogram/Cubic metre	$\mathrm{kg} / \mathrm{m}^{3}$

Length is the distance between two points

The unit of length in the international system of units is the metre (m)

Multiples and submultiples of metre

UNIT	SYMBOL	EQUIVALENT
Kilometre	km	$1 \mathrm{~km}=1000 \mathrm{~m}$
Hectometre	hm	$1 \mathrm{hm}=100 \mathrm{~m}$
Decametre	dam	$1 \mathrm{dam}=10 \mathrm{~m}$
Metre	m	1 m
Decimetre	dm	$1 \mathrm{dm}=0,1 \mathrm{~m}$
Centimetre	cm	$1 \mathrm{~cm}=0,01 \mathrm{~m}$
Millimetre	mm	$1 \mathrm{~mm}=0,001 \mathrm{~m}$

Area is the part of an object that is in contact with the outside

The unit of area

 in the international system of units is the square metre (m^{2})We calculate the area of a figure
multipl multiplying the length
width by the le

Multiples and submultiples of square metre

Multiples and submultiples of cubic metre

UNIT	SYMBOL	EQUIVALENT	km^{3} h^{3} dam 3
Cubic kilometre	km ${ }^{3}$	$1 \mathrm{~km}^{3}=1000000000 \mathrm{~m}^{3}$	
Cubic hectometre	hm ${ }^{3}$	$1 \mathrm{hm}^{3}=1000000 \mathrm{~m}^{3}$	
Cubic decametre	dam ${ }^{3}$	$1 \mathrm{dam}^{3}=1000 \mathrm{~m}^{3}$	[
Cubic metre	m^{3}	$1 \mathrm{~m}^{3}$	
Cubic decimetre	dm^{3}	$1 \mathrm{dm}^{3}=0,001 \mathrm{~m}^{3}$	n the stairs of the volume, each step
Cubic centimetre	cm^{3}	$1 \mathrm{~cm}^{3}=0,000001 \mathrm{~m}^{3}$	greater than the inferior immediate
Cubic millimetre	mm ${ }^{3}$	$1 \mathrm{~mm}^{3}=0,000000001 \mathrm{~m}^{3}$	

Other units of volume

In addition to the unit of the international system, the cubic meter, and the multiples and submultiples that you already know, it is very frequent to use other units, like the litre (L), the decilitre (dL), the centilitre (cL) and the milllilitre (mL)

We use different containers to measure the volume of liquids, in a laboratory. Some of them are the following ones

Erlenmeyer flask

Pipette

Graduated cylinder

Beaker

Volumetric flask

Mass is the amount of matter that an object has

The unit of mass in the international system of units is the kilogram (kg)

We can measure the mass with balances

The air and the other gases have mass and take up a place in space, just as solids and liquids

An object has the same mass in any place

Submultiples of kilogram

UNIT	SYMBOL	EQUIVALEN	
Kilogram	kg	1 kg	
Hectogram	hg	$1 \mathrm{hg}=0,1 \mathrm{~kg}$	
Decagram	dag	$1 \mathrm{dag}=0,01 \mathrm{~kg}$	mg
Gram	g	$1 \mathrm{~g}=0,001 \mathrm{~kg}$	
Decigram	dg	$1 \mathrm{dg}=0,0001 \mathrm{~kg}$	In the stairs of the
Centigram	cg	$1 \mathrm{cg}=0,00001 \mathrm{~kg}$	than the inferior
Milligram	mg	$1 \mathrm{mg}=0,000001 \mathrm{~kg}$	

DENSITY

Density is the relationship between the mass of an object and its volume, we represent it by the symbol (ρ)

The density is a characteristic property because it allows us to identify substances
If we want to calculate the density of an object, we must calculate its mass and its volume

The mathematical expression of the density is:

$$
\rho=\frac{m}{v}
$$

The density of the ball of the figure is:
$\rho=\frac{30 \mathrm{~g}}{10 \mathrm{~cm}^{3}}=3 \mathrm{~g} / \mathrm{cm}^{3}$ $\frac{30 \mathrm{~g}}{30}$

TEMPERATURE

Temperature informs us about the thermal state of objects
The temperature of the objects does not depend on either the type of substance nor the amount of substance

We can measure the temperature of an object with thermometers

The unit of temperature in the international system of units is the Kelvin

In order to transform the degrees Celsius into Kelvin we must add 273

EKERCISE I

Is the air matter?
A. No, because it does not weigh anything
B. Yes, although its weight is zero
C. No, because we do not see it
D. Yes, although we cannot see it

Put the following words in order to form a text with sense

EKERCISE 3

Classify the following terms as material or not:

TERMS		YES OR NOT
A roll of film		
The temperature of soup		
Alcohol		
Kindness		
Butane gas		
Gold		
The volume of a table		
Smoke		
Clouds		

EXERCISE 4

Indicate in each case the magnitude (property that we measure), the unit and the amount of the following measures:

MEASUREMENT	MAGNITUDE	UNIT	AMOUNT
15 g			
$10 \mathrm{~m}^{3}$			
$14 \mathrm{~cm}^{2}$			
1000 L			
50 s			
100 cm			
$1,2 \mathrm{~g} / \mathrm{cm}{ }^{3}$			

EKERCISE 5

What are the decametre, the hectometre and the kilometre?
A. Multiples of metre B. Submultiples of metre C. Submultiples of hectare
D. Submultiples of length

Kilometre	km
Hectometre	hm
Decametre	dam
Metre	m
Decimetre	dm
Centimetre	cm
Millimetre	mm

Complete the chart with the corresponding unit

km	hm	dam	m	dm	cm	mm
0,003						
	0,2					
		5				
			3000			
				56,8		

Complete the chart with the corresponding unit

km^{2}	hm^{2}	dam^{2}	$\mathrm{~m}^{2}$	dm^{2}	$\mathrm{~cm}^{2}$	$\mathrm{~mm}^{2}$
0,002						
	0,01					
		3				
			4000,20			
				200,45		

Complete the chart with the corresponding unit

km^{3}	hm^{3}	dam^{3}	$\mathrm{~m}^{3}$	dm^{3}	$\mathrm{~cm}^{3}$	$\mathrm{~mm}^{3}$
0,003						
	0,03					
		0,3				
			3			
				30		
					300	

EKERCOSE 9

Complete the chart with the corresponding unit

EKERCISE 110

The mass of an object is 320 g , its area is $80 \mathrm{~cm}^{2}$, its volume is $250 \mathrm{~cm}^{3}$, its height is 70 mm and its temperature is $15^{\circ} \mathrm{C}$. Express the previous measures in the units of the international system.

Measurement	Unit of International System
320 g	
$80 \mathrm{~cm}^{2}$	
$250 \mathrm{~cm}^{3}$	
70 mm	
$15^{\circ} \mathrm{C}$	

EKERCLSE IT

What is the area of the figure?
A. Forty five square metres B. Ninety square metres C. Nineteen square metres D. Forty five cubic metres

Calculate the area of the following figure

Express the result in m^{2} and in mm^{2}

EKERCISE आ3

What is the volume of the cube?

A. A cubic metre
B. Three cubic metres
C. A square metre
D. A litre

Calculate the volume of the figure below

Express the result in:

- m^{3}
- mm^{3}
- L

EKERCISE 15

You divide a chalk in pieces of different sizes. Tell if the following affirmations are true or false
A. The sum of the masses of the different chalk pieces is greater than the mass of the complete chalk
B. The volume of the complete chalk is equal to the sum of the volumes of the chalk pieces
C. The area of the complete chalk is equal to the sum of the areas of the chalk pieces
D. The temperature of a chalk piece is less than the complete chalk

EKERCISE I®

Complete :

In order to find the of a substance, you have to divide its between its.

Complete the following chart

MASS	VOLUME	DENSITY
35 g	$7 \mathrm{~cm}^{3}$	
3000 kg	$0,8 \mathrm{~m}^{3}$	
300 g		$600 \mathrm{~g} / \mathrm{L}$
	5 L	$0,9 \mathrm{~kg} / \mathrm{L}$

The wood piece and the metal piece are the same size. Why does the piece of metal weigh more?
A. Because the density of the wood is greater than the density of the metal
B. Because the metal is less dense than the wood
C. Because the metal is heavier than the wood
D. Because the density of the metal is greater than the density of the wood

Susana Morales Bernal

EKERCISE 18

We have two exactly equal dice, one of silver and another one of gold. We submerge them in two containers that have the same amount of water.
Will the level that the water reaches be the same in both containers? Explain if each of the following expressions are true or false.
A. No, because both dice have the same volume
B. Yes, because although they are different substances, they have the same volume
C. It depends on what the containers are like
D. Yes, because the gold die weighs more than the silver one

EMERCLSE 19

What is denser, one gram of mercury or one ton of mercury?
A. One gram of mercury
B. One ton of mercury
C. They are the same

What has more mass, one litre of water or one litre of mercury?

A. One litre of water
B. One litre of mercury
C. They are the same

What takes more volume, one litre of water or one litre of mercury?

What is denser, water or mercury?
A. Water
B. Mercury

EXERCISE 20

Revise your vocabulary
 Choose a word and fill the blanks below

distance, has, submultiple, magnitude, does, amount, square, depend, space, Kelvin, mass, takes up, volume, area, two, cubic, temperature, kilogram, mass, volume
A. Matter is all that has and

\qquad
a place in space.
B. Mass is the
\qquadof matter that an object
\qquadC. Length is thebetweenpoints.
D. The that an object takes up is theE. The unit of volume in the international system of units is themetre.
F. Density is the relationship between the of an object andthe
\qquad it takes up.
G. The unit of in the international system of units is the................... metre (m^{2}).
H. Beauty is not a physical
I. Temperature of the objects not
on theamount of substance.
J. The unit of in the international system of units is the
K. The milligram is aSusana Mo ofthe
\qquad

GLOSSARY

\square Amount
\square Area
\square Balance
\square Beaker
\square Characteristic
\square Container
\square Cubic meter
\square Degree
\square Density
\square DistanceEnergy

- Erlenmeyer flaskForce
\square Gas
\square Graduated cylinder
\square International System
\square Length
\square Liquid
\square Litre
\square Mass
\square Matter
\square Metre
\square Physical magnitude
\square Pattern
\square Pipette
\square Point
\square Property
\square Qualitative
\square Quantitative
\square Relationship
\square Set
\square Solid
\square Space
\square Square metre
\square Submultiples
\square Substance Susana Morales Bernal
\square Temperature
\square Thermometer
- Time
\square To allow
\square To calculate
\square To classify
\square To compare
\square To complete
\square To describe
\square To express
\square To indicate
\square To measure
\square To order
\square To take up
\square To weigh
\square Unit
- Volume
\square Volumetric flask

Erlenmeyer flask

Beaker

Susana Morales Bernal

Volumetric flask

Graduated cylinder

Pipette

